
MICROSOFT SQL SERVER TO SNOWFLAKE
MIGRATION REFERENCE MANUAL

2 Introduction

3 Preparing for the migration

8 Executing the migration

13 Migration success factors

14 Need help migrating?

15 Appendix A—Microsoft SQL Server to Snowflake Feature Mapping

21 Appendix B—Other Known Migration Issues

22 Appendix C—Comparing Data from Microsoft SQL Server to Snowflake

22 Appendix D—References

23 About Snowflake

2

This document provides the high-

level methodology needed to prepare

for and execute the migration of
an existing Microsoft SQL Server
deployment to Snowflake. The
appendices at the end of this

document list differences between
Microsoft SQL Server and Snowflake
that you should consider as part of

the migration.

The intended audience of this

document includes the solution
architects, program managers, and

Snowflake solution partners that
need a clearly defined approach for
migrating an existing Microsoft SQL
Server to Snowflake.

INTRODUCTION C
H

A
M

P
IO

N
 G

U
ID

E
S

3

PREPARING FOR
THE MIGRATION

Successful data migration projects start with a
well-designed plan. An effective plan accounts
for the many components that need to be
considered, paying particular attention to
architecture and data preparation. This section
gives you a checklist of information to gather
and decisions to make before you start the
actual migration.

IDENTIFYING APPROPRIATE USE

Snowflake, at the core of the platform, is an ANSI
SQL relational database built for analytical queries.
Therefore, OLAP workloads are ideal for migrating to
Snowflake. As an example, Snowflake works best as
an operational data store (ODS) and data warehouse.
Its unique architecture enables processing of huge
quantities of data, but it creates challenges when
organizations migrate highly transactional, high
capacity workloads. Snowflake is an ever-evolving

platform with enhanced capabilities for high
concurrency, low latency workloads and point read
searches through its search optimization service.
However, for optimal success and to ensure you
realize the value that Snowflake enables, be sure to
identify the appropriate workload to migrate. Contact
your local Snowflake representative to discuss
appropriate workloads.

DOCUMENT THE EXISTING SOLUTION

Key outcomes:

• List of Microsoft SQL Server databases to migrate

• List of Microsoft SQL Server database objects
to migrate

• List of Microsoft SQL Server schemas to migrate

• List of processes and tools that populate and
pull data from Microsoft SQL Server

• List of security roles, users, and permissions

• List of Snowflake accounts that exist or need
to be created

• Frequency of security provisioning processes

• Documentation of the existing Microsoft SQL
Server solution into an as-is architecture diagram

Begin preparing for your migration from Microsoft
SQL Server to Snowflake by determining which

databases within the Microsoft SQL Server need to
be migrated and which ones don’t. Then determine
which schemas to migrate.

Identify and document the objects within the
Microsoft SQL Server databases to migrate. Include
the size of the data to establish the scope of the
migration project. Plan not to migrate Microsoft SQL
Server catalog tables and views such as sys.tables
(tables that have sys as a prefix) since they are
catalog (metadata or directory) objects and aren’t
needed in Snowflake.

If you aren’t sure which databases and database
objects to migrate, reference the Microsoft
documentation, here. Avoid moving unused objects,
unless you need them for audit or historical purposes.

After you’ve identified the Microsoft SQL Server
databases and database objects to migrate, evaluate
each data source to determine whether the data
comes from on-premises or a cloud-based source.
This will help determine the methods available for
loading the data into Snowflake. Specifically, will you
need to load terabytes or even petabytes of on-
premises data into Snowflake? If so, you may require
capabilities such as AWS Snowball, Azure Data Box,
or Google Transfer Appliance to move the data as
efficiently as possible.

In addition to evaluating the data sources that
populate Microsoft SQL Server, identify and
document the processes and tools that move data in
and out of Microsoft SQL Server.

C
H

A
M

P
IO

N
 G

U
ID

E
S

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/querying-the-sql-server-system-catalog-faq?view=sql-server-2017
https://aws.amazon.com/snowball/
https://azure.microsoft.com/en-us/services/storage/databox/
https://cloud.google.com/transfer-appliance

4

Here are some examples:

• ETL/ELT tools

• Scripting languages

• Reporting/visualization tools

• Data science processes

• Machine learning processes

Use this list to evaluate the level of Snowflake
support for the tools you currently use, and to help
determine the migration approach that would best
fit your needs.

Document the roles, users, and granted permissions
that currently exist within Microsoft SQL Server
to prepare for the security implementation in
Snowflake. Pay special attention to sensitive data
sets and how they’re secured within Microsoft SQL
Server. Also, determine how frequently security
provisioning processes run so you can create similar
security within Snowflake. In addition, capture
the Snowflake accounts already set up and any
Snowflake accounts needed for the migration,
since they will have an impact on the security
implementation.

If you do not have this information readily available,
Snowflake Professional Services and/or a Snowflake
solution partner can help capture this information.

ESTABLISH A MIGRATION APPROACH

Key outcomes:

• List of processes to migrate as-is

• List of processes that need reengineering

• List of processes that need fixing

• Draft of migration deliverables

• To-be architecture diagram

After you’ve documented your existing Microsoft
SQL Server solution into an as-is architecture
diagram, focus on your migration approach.
Carefully consider how much reengineering
you want to undertake as part of the migration.
Organizations usually fall somewhere between
wanting to migrate the existing solution as is and
completely reworking the existing solution.

Snowflake recommends minimal reengineering for
the first iteration unless your current system is
broken. When you decide what you will reengineer,
remember that changes to the existing data
structures will impact downstream reporting and
visualization tools. Also, more reengineering requires
more development and testing, which extends the
length of a migration project.

C
H

A
M

P
IO

N
 G

U
ID

E
S

5

If you want to resolve issues with your existing
implementation as part of the migration, include that
information in your migration plan.

Break the migration into incremental deliverables
that enable your organization to start making the
transition to Snowflake faster. This will also provide
value to your organization sooner.

Use the as-is architecture diagram to create a to-
be architecture diagram for communicating the
migration approach and ensuring the approach
meets the requirements of the organization.

CAPTURE THE DEVELOPMENT AND
DEPLOYMENT PROCESSES

Key outcomes:

• List of tools introduced with the migration

• List of tools deprecated after the migration

• List of development environments needed
for the migration

• List of deployment processes used for
the migration

Depending on your migration approach, you may
introduce new tools and deprecate old tools as
part of the migration. Since you documented your
existing tools and processes in an earlier step, this is
when you should document plans to introduce new
tools and deprecate old tools.

Your organization may want to change your
development or deployment processes as part of
the migration. Whether these processes change or
not, capture the development environments used
for the migration (for example, Pre-Prod/Prod or
Dev/QA/Prod), and the deployment processes

5

used for the migration (such as the source control
repository and the method for deploying changes
from one environment to another). This information
is critical to how you will implement development
and deployment.

PRIORITIZE DATA SETS FOR MIGRATION

Key outcomes:

• List of data sets to migrate first

• Method for identifying process dependencies
for data sets

• Documentation of process dependencies
for data sets

To deliver value as soon as possible, identify
which data sets you should migrate first. The ideal
candidates for starting the migration provide value
to the organization with minimal migration effort.
Rather than starting with the most complex data sets,
begin with a simpler data set that provides a quick
win and establishes a foundation of development and
deployment processes from which to build the rest of
the migration.

To prioritize data sets for migration, pay careful
attention to understanding the process dependencies
of the data sets. Document those dependencies. By
identifying dependencies through a solid process
before beginning the migration work, you will
experience fewer challenges during the migration.
If needed, you can engage Snowflake Professional
Services and/or a Snowflake solution partner to help
capture these dependencies.

C
H

A
M

P
IO

N
 G

U
ID

E
S

6

Ideally, you can create this dependency
documentation using an automated process that
iterates through the existing job schedules and
captures the data within Snowflake. This eliminates
having to depend on manual investigation. Using
an automated process pays dividends throughout
the migration project by updating dependency
documentation as changes take place. This is
important since the underlying systems will likely
change during the migration.

IDENTIFY THE MIGRATION TEAM

Key outcomes:

• List of migration team members and roles

• Contact information for all team members

Document the people involved in the migration
and the roles they will play. The documentation
should include each team member’s name, contact
information, and role. Team members may come
from your team, Snowflake staff, or a Snowflake
solution partner.

Some of the obvious roles required for a migration
are developer, quality assurance engineer, business
owner, project manager, program manager, scrum
master, and communication specialist.

Snowflake Professional Services and/or a
Snowflake solution partner can fill multiple
needs for a migration, including solution design,
requirements gathering, documentation,
development, testing, delivery, and training.
The entire team works together to successfully
complete the migration and communicate the
progress of the migration to stakeholders.

DEFINE THE MIGRATION
DEADLINES AND BUDGET

Key outcomes:

• List of business expectations for the

migration deadline

• Documented migration plan and budget
required for the migration project

• Template of estimated costs to run Snowflake

Organizational expectations for migration deadlines
are important planning inputs. In addition, consider
other information such as the budget, resource
availability, and amount of reengineering required.
By gathering all of this information, you can establish
and communicate achievable deadlines, even if the
deadlines differ from what was originally expected.

It’s critical to create a migration plan to understand
the budget required to complete the migration.
Snowflake Professional Services and/or a Snowflake
solution partner can help create an end-to-end plan
that includes an estimate of the migration costs
and timeline. In addition, they can provide code
conversion services to help accelerate the migration
and reduce the overall costs. Compare the scope
and costs of the migration to the available budget to
ensure you have sufficient resources to complete the
migration work.

A key input into the budget is the number of
Snowflake compute clusters (also called virtual
warehouses) required to support the migration and
the number of compute clusters needed after the
migration is completed. A Snowflake representative
can provide a template and work with you to

C
H

A
M

P
IO

N
 G

U
ID

E
S

7

determine how many compute clusters are needed.
The template calculates the number of minutes a
warehouse is expected to run each day and the
number of days a warehouse is expected to run each
week. Once you complete the template, you will get
an estimated annual cost.

DETERMINE THE MIGRATION OUTCOMES

Key outcomes:

• List of high-level outcomes once the migration is
completed

• Documented plan for communicating the migration
project wins to stakeholders

As the final step of preparing for the migration,
capture the assumptions that will determine whether
the migration is successful, the high-level outcomes
that should be achieved by the migration, and the
benefits those outcomes provide for stakeholders.
(For example, turning off a Microsoft SQL Server
could be one of your desired outcomes.) Use this
documentation to validate that the migration project
provides the overall benefits stakeholders expect to
achieve from the migration.

You can express this information as success or failure
criteria for the migration project. The documentation
can also include benchmarks that compare process
execution on Microsoft SQL Server and Snowflake.
After you compile this information, use it to
communicate the success of the migration project to
stakeholders.

C
H

A
M

P
IO

N
 G

U
ID

E
S

8

EXECUTING
THE MIGRATION

After you gather the information and decisions
needed to prepare for the migration, you can
execute the migration. This section guides you
through the steps required.
If you need assistance with any part of executing
the migration from Microsoft SQL Server to
Snowflake, check with your Snowflake representative
for Snowflake Professional Services and/or
recommended Snowflake solution partners.

ESTABLISH SECURITY

When first setting up a Snowflake account, you can
manually create users and roles to get started. From
there, make it a priority to move to an automated
process that creates users and assigns them to
roles, and removes users when they are no longer
applicable. Depending on your security auditing
requirements, create processes to capture role and
user creation and deletion, as well as the granting and
revoking of roles.

Your existing Microsoft SQL Server security can be
a good starting point for setting up security within
Snowflake. However, determine if there are Microsoft
SQL Server roles and users that are no longer needed
or should be implemented differently as part of your
migration to Snowflake.

Start by creating roles for at least the first data sets
you will migrate. Then create users and assign them
to the appropriate roles.

You can establish common roles for developer access,
including read-only access, read and write access, and
administrative access, for nonproduction databases.
You may require additional roles for restricting access
to sensitive data.

DEVELOP A TEST PLAN

Determine and execute the appropriate level and
scope of testing for each environment. (For example,
you might set it up so schedules are executed in
QA and Prod but not in Dev, or data comparisons
between Microsoft SQL Server and Snowflake occur
only for Prod.) Automate testing as much as possible,
so it’s repeatable and enables you to identify any
issues. Define, document, and get agreement on
acceptance criteria for the tests.

C
H

A
M

P
IO

N
 G

U
ID

E
S

9

PREPARE SNOWFLAKE FOR LOADING

There are a couple of options for setting up your
Snowflake implementation, depending on the number
of Snowflake accounts you have.

• When you have one Snowflake account, “follow
these steps:

1. Create a Snowflake database for the
combination of the Microsoft SQL Server
environment and database that you need to
migrate (for example, Dev_Sales/QA_Sales/
Prod_Sales).

2. Create schemas in Snowflake that match the
schemas from Microsoft SQL Server for each
schema you intend to migrate.

3. Create a Snowflake database for each
Microsoft SQL Server environment (such as
Dev/QA/Prod) that you need to migrate.

4. Create a Snowflake database for each
Microsoft SQL Server database.

5. Create schemas for each of the Microsoft
SQL Server databases you intend to migrate
to Snowflake.

This approach clearly identifies the environment
and database in the database name and uses
schemas to contain the tables and views, so it’s
easier to point tools from Microsoft SQL Server
to Snowflake. Be aware that since the Snowflake

MS SQL SERVER
(DEV/QA/PROD)

SNOWFLAKE ACCOUNT
(DEV/QA/PROD)

Sales

database

Product

database

HR

database

Sales

database

Product

database

HR

database

Figure 1: Migrating a Microsoft SQL Server environment and database to Snowflake

C
H

A
M

P
IO

N
 G

U
ID

E
S

10

database name contains the environment in its
name, you will need to update any views that
reference a database as the view is deployed
from one environment to another (for example,
deploying from QA to Prod).

• When you have multiple Snowflake accounts,
you can create the Snowflake databases and
schemas to match the Microsoft SQL Server
databases and schemas for a single environment.
Figure 1 provides examples of migrating
a Microsoft SQL Server environment to a
Snowflake account database and Microsoft SQL
Server databases to Snowflake databases.

After you create the databases and schemas in
Snowflake, you can execute the DDL for creating
the database objects in Snowflake.

Create the compute clusters (virtual warehouses)
based on the information captured during the
migration preparation. There should be separate
compute clusters for each environment (such as
Dev/QA/Prod) and for each function that the
compute clusters will support (such as ETL/ELT
or reporting and visualization). Figure 2 contains a
reference architecture for using compute clusters
for different workloads.

Base the initial sizing of the compute clusters
(virtual warehouses) on the estimates you made
while preparing for the migration. Then adjust the
size as needed throughout the migration. Also,
set up resource monitors to track usage and take
appropriate action when limits are reached.

As you create the databases, database objects,
and compute clusters, assign the appropriate
security roles.

ENVIRONMENT

DATABASES

S3/Azure
Staging

Compute
clusters for

loading

Compute clusters
for transformations

Replication
& streaming

tools

Data
transformation

tools

Source systems
(cloud or
on-prem)

Staging
tables

Reporting
database(s)

(schemas, tables,
views, etc.)

Compute
clusters for

Data
Scientists

Compute
clusters for

Ad-hoc Users

Compute
clusters for

BI tools

Native
connector/

ODBC/
JDBC

Web UI

Native
connector/

ODBC/
JDBC

Analytics &
data science

user tools

Ad-hoc
SQL queries

Business
intelligence

tools

NO ETL

ETL

ELT

DATA FLOW

Figure 2: Using compute clusters for different workloads

C
H

A
M

P
IO

N
 G

U
ID

E
S

11

LOAD INITIAL DATA SETS

You may require AWS Snowball, Azure Data Box,
or Google Transfer Appliance if your Microsoft
SQL Server is on-premises and you need to move
terabytes or petabytes of data. Add an appropriate
amount of time to the migration schedule to
provision these boxes, load them with data, transport
them to the cloud data center, and offload the data
into the cloud servers.

You can load data into Snowflake after you’ve
extracted the data from Microsoft SQL Server and
moved the data to the cloud. Use this data loading to
test the configuration of the databases and database
objects, compute clusters, and the security you have
implemented. See the Snowflake documentation for
more information.

Depending on which Microsoft SQL Server
environment the data came from and which
Snowflake database you populate, you could use
cloning to move data within Snowflake from one
database to another. Cloning in Snowflake doesn’t
require additional storage. Therefore, you avoid
the challenges and costs of loading the same data
multiple times into different Snowflake databases.

Plan to extract data from Microsoft SQL Server and
load it into Snowflake more than once. Also, begin
with a subset of the data rather than trying to load
the entire contents of the Microsoft SQL Server at
the beginning of the migration.

KEEP DATA CURRENT

Implement processes to keep the data current after
you load the historical data sets from Microsoft SQL
Server into Snowflake.

You can set up data loading schedules that parallel
the existing Microsoft SQL Server loading processes,
or you can create new processes for loading data into
Snowflake. This is another opportunity to evaluate
whether changes to the schedule would be beneficial
and should be part of the migration.

To ensure you populate data in the correct order,
create the appropriate schedules based on a clear
understanding of the process dependencies you
captured when you prepared for the migration.

Along with scheduling the processes to run, monitor
those processes so you can clearly understand and
communicate the state of the data (for example,
loading is in progress, loading completed successfully,
or loading failures occurred). You can verify whether
SLAs are being met within Snowflake, or identify and
resolve process issues.

IMPLEMENT THE TEST PLAN

Begin the Snowflake implementation with the initial
data sets loaded and processes running to keep
the data current. Then you can start testing your
Snowflake implementation. Be sure to engage the
team members you identified when you prepared
for the migration. After you complete initial testing
and validate the data is ready for further scrutiny,
engage additional groups to test their data sets and
applications against Snowflake.

 Compare data between the Microsoft SQL Server
and Snowflake environments throughout the
migration. If there are data differences, investigate to
determine the cause and resolution.

Figure 2: Using compute clusters for different workloads

C
H

A
M

P
IO

N
 G

U
ID

E
S

https://aws.amazon.com/snowball/
https://azure.microsoft.com/en-us/services/storage/databox/
https://cloud.google.com/transfer-appliance
https://docs.snowflake.net/manuals/user-guide/data-load-overview.html

12

Part of your migration may include fixing processes
known to be incorrect in Microsoft SQL Server.
Therefore, the test results may not match Snowflake,
so use other methods to validate that the data is
correct in Snowflake. Document why data won’t
match and share the information with the groups
performing the testing so that they don’t spend time
researching previously identified issues.

Also, compare the performance of the processes
that load and consume data to ensure Snowflake is
performing as expected. Share these comparisons
with stakeholders to highlight the benefits of
migrating from Microsoft SQL Server to Snowflake.

Also, compare the performance of the processes
that load and consume data to ensure Snowflake is
performing as expected. Share these comparisons
with stakeholders to highlight the benefits of
migrating from Teradata to Snowflake.

RUN MICROSOFT SQL SERVER AND
SNOWFLAKE IN PARALLEL

During the migration, run the Microsoft SQL Server
and Snowflake systems in parallel. Minimize the
time you have both systems running, but make
sure it’s long enough to validate you’ve completed
the migration successfully before shutting down
Microsoft SQL Server.

Consider how to best run Microsoft SQL Server
and Snowflake in parallel to compare data and
performance. For example, you may need to create
hashes as you extract data from Microsoft SQL
Server in order to compare data at the row level
between Microsoft SQL Server and Snowflake
(See Appendix C). Perform these comparisons in
Snowflake to keep from negatively impacting your
Microsoft SQL Server.

REDIRECT TOOLS TO SNOWFLAKE

After you’ve migrated a sufficient amount of
data for each tool you identified while preparing
for the migration, redirect the tool connections
to Snowflake.

This usually involves copying and updating the
existing solution to connect to Snowflake instead of
Microsoft SQL Server. Compare the tools’ output to
ensure the results are the same between the two
systems. In addition, evaluate the performance of
the tools to verify they are performing as expected
in Snowflake.

CUT OVER TO SNOWFLAKE

The cutover from Microsoft SQL Server to
Snowflake can occur only after you’ve migrated
the initial data, enabled processes to keep the data
current, completed testing that verifies you’ve

successfully migrated the data, and redirected the
tools from Microsoft SQL Server to Snowflake.

Make sure you’ve planned and communicated the
cutover date in advance to your Microsoft SQL
Server users. In addition, make sure they can log
into Snowflake and run the redirected tools they
depend on.

To complete the cutover, turn off data processes
that populate Microsoft SQL Server. In addition,
revoke access to Microsoft SQL Server so users and
tools no longer have access.

C
H

A
M

P
IO

N
 G

U
ID

E
S

13

Paying attention to certain success factors
will reduce risk and enable you to successfully
complete the migration. This section
provides insight into how to increase the
speed of migration and ensure the migration
from Microsoft SQL Server to Snowflake
is successful.

IDENTIFY AND MITIGATE DIFFERENCES
BETWEEN MICROSOFT SQL SERVER
AND SNOWFLAKE

Use Appendix A early in the migration process to
identify differences between Microsoft SQL Server
and Snowflake. Present these differences to the
organization along with strategies for handling
the differences. Then, confirm that your proposed
approach will meet their requirements.

RESOLVE MIGRATION ISSUES

There will inevitably be issues that occur during and
after the migration. Establish processes to document
and escalate migration issues so you can resolve
them as quickly as possible.

For each escalation, document the issue, who
is responsible for working on the issue, who is
responsible for communicating progress, and a list of
contacts (include contacts from your organization,

from Snowflake, and from any other parties
involved). Be sure everyone involved can log a
support ticket in the Snowflake Community portal.
Likewise, they should know how to ask questions and
find resources in the Snowflake Community forum
and on Stack Overflow.

Establish a regular cadence for reviewing
documented issues and getting an updated status
on resolving each issue.

You may also identify issues during the migration
that can be resolved after the migration. Document
and prioritize them, so you can work on them
post-migration.

COMMUNICATE MIGRATION BENEFITS

Use the high-level outcomes that you captured while
preparing for the migration to document the actual,
corresponding benefits that occurred. Publish these
results to stakeholders so they clearly understand the
benefits of the migration.

MIGRATION
SUCCESS FACTORS C

H
A

M
P

IO
N

 G
U

ID
E

S

https://community.snowflake.com/s/
https://community.snowflake.com/s/
https://stackoverflow.com/questions/t

14

Snowflake is available to accelerate
your migration, structure and
optimize your planning and
implementation activities, and
apply customer best practices to
meet your technology and business
objectives. Snowflake’s Professional
Services Team deploys a powerful
combination of data architecture
experience and advanced technical

knowledge of the platform to deliver
high performing data strategies,

proofs of concept, and migration
project planning and implementation.

NEED HELP
MIGRATING?

Snowflake’s global and regional solution partners
also have extensive experience performing proofs
of concept and platform migrations. They offer
services ranging from high-level architectural
recommendations to manual code conversions. Many
Snowflake partners have also built tools to automate
and accelerate the migration process.

Whether your organization is fully staffed for a
platform migration or you need additional expertise,
Snowflake Professional Services and solution
partners have the skills and tools to accelerate your
journey to cloud-built data analytics, so you can
quickly reap the full benefits of Snowflake.

To find out more, contact the Snowflake sales team
or visit the Snowflake Community.

C
H

A
M

P
IO

N
 G

U
ID

E
S

https://community.snowflake.com/s/

15

APPENDIX A: MICROSOFT SQL SERVER
TO SNOWFLAKE FEATURE MAPPING

SQL SERVER SNOWFLAKE COMMENTS

MSSQL-CLI SnowSQL SnowSQL is the next-generation command-line client for connecting to Snowflake to execute SQL queries and perform all DDL and DML
operations, including loading data into and unloading data out of database tables.

BCP (Bulk Copy
Program)

COPY <INTO> COPY INTO is a command executed within SnowSQL or any other client connected to Snowflake and can ingest AVRO, Parquet, ORC,
JSON, XML, and flat delimited text files.

MS INTERVAL MINUTE TO SECOND INTERVAL data types aren't supported in Snowflake but date calculations can be done with the date comparison functions (e.g. DATEDIFF
and DATEADD).

UTILITIES

SQL SERVER (TSQL) SNOWFLAKE COMMENTS

BIGINT NUMBER Precision and scale not to be specified when using Numeric.

BIT BOOLEAN Recommended: Use NUMBER if migrating value-to-value to capture the actual BIT value. Use Boolean in Snowflake if the desired outcome
is to restrict to Ternary Logic (three valued): TRUE, FALSE, or NULL (UNKNOWN).

DECIMAL NUMBER Default precision and scale are (38,0).

INT NUMBER Precision and scale not to be specified when using Numeric.

MONEY NUMBER Money has a range of 19 digits with a scale of 4 digits, so NUMBER(19,4) can be used.

NUMERIC NUMBER Default precision and scale are (38,0).

DATA TYPES

Snowflake supports most basic SQL data types (with some restrictions) for use in columns, local variables, expressions, parameters, and any other appropriate locations.
Data types are automatically coerced whenever necessary and possible.

C
H

A
M

P
IO

N
 G

U
ID

E
S

16

APPENDIX A: MICROSOFT SQL SERVER
TO SNOWFLAKE FEATURE MAPPING

DATA TYPES (cont’d)

SQL SERVER (TSQL) SNOWFLAKE COMMENTS

SMALLINT NUMBER Default precision and scale are (38,0).

SMALLMONEY NUMBER NUMBER with precision of 10 digits, with a scale of 4, so NUMBER(10,4) can be used.

TINYINT NUMBER Default precision and scale are (38,0).

FLOAT FLOAT Snowflake uses double-precision (64-bit) IEEE 754 floating point numbers.

REAL FLOAT The ISO synonym for REAL is FLOAT(24).

DATE DATE Default in SQL Server is YYYY-MM-DD.

DATETIME2 TIMESTAMP_NTZ Snowflake: TIMESTAMP with no time zone, time zone is not stored. DATETIME2 has a default precision of up to 7 digits, Snowflake has
TIMESTAMP_NTZ with the precision of 9 digits.

DATETIME DATETIME SQL Server datetime is not ANSI or ISO 8501 compliant. Storage size is 8 bytes. Accuracy is rounded to increments of .000, .003, or .007
seconds.

DATETIMEOFFSET TIMESTAMP_LTZ Up to 34,7 in precision, scale.

SMALLDATETIME DATETIME SMALLDATETIME is not ANSI or ISO 8601 compliant. It has a fixed 4 bytes storage space.

TIMESTAMP
(Unsupported)

TIMESTAMP_NTZ Use DATETIME2 or CURRENT_TIMESTAMP function.

TIME TIME SQL Server has a precision of 7 nanoseconds. Snowflake has precision of 9 nanoseconds.

C
H

A
M

P
IO

N
 G

U
ID

E
S

17

APPENDIX A: MICROSOFT SQL SERVER
TO SNOWFLAKE FEATURE MAPPING

DATA TYPES (cont’d)

SQL SERVER (TSQL) SNOWFLAKE COMMENTS

CHAR VARCHAR(1) Any set of strings that is shorter than the maximum length is not space-padded at the end.

TEXT VARCHAR This data type will be discontinued on SQL Server. Use NVARCHAR, VARCHAR, or VARBINARY instead.

VARCHAR VARCHAR Any set of strings that are shorter than the maximum length is not space-padded at the end.

NCHAR VARCHAR NCHAR is used on fixed-length-string data.

NTEXT VARCHAR This data type will be discontinued on SQL Server. Use NVARCHAR, VARCHAR, or VARBINARY instead.

NVARCHAR VARCHAR NVARCHAR’s string length can range from 1–4000.

BINARY BINARY Snowflake: maximum length is 8 MB.

IMAGE N/A This data type will be discontinued on SQL Server. Use NVARCHAR, VARCHAR, or VARBINARY instead.

VARBINARY BINARY Snowflake: maximum length is 8 MB.

UNIQUEIDENTIFIER N/A Not Supported.

C
H

A
M

P
IO

N
 G

U
ID

E
S

18

APPENDIX A: MICROSOFT SQL SERVER
TO SNOWFLAKE FEATURE MAPPING

SQL SERVER SNOWFLAKE COMMENTS

Instance Account A Snowflake account is created within a single cloud provider region, and it defines the Snowflake edition, controls authenticating user
connections, and encapsulates all costs associated with the platform.

User User Snowflake users are created and managed at the account level and are independent of database schema objects. SQL Server offers a similar
model with a user setup and is assigned a login but the user may not be able to use or access the databases.

Role Role Object ownership and object access control are managed at the role level using a combination of discretionary access control (DAC) and
role-based access control (RBAC). Access privileges are not granted directly to a user. SQL Server has a similar model of having set role
permissions with the user being assigned to a role. Access privileges are not granted directly to a user, even for logging into SQL Server.

Databases Databases A single Snowflake account supports the creation of a soft limit of 10,000 logical databases.

SQL SERVER INSTANCE VERSUS SNOWFLAKE ACCOUNT

Similar to SQL Server instance, a Snowflake account encapsulates users, roles, and databases..

SQL SERVER SNOWFLAKE COMMENTS

Schemas Schemas Snowflake schema objects are created and managed independent of a user login.

Tables Tables Snowflake supports permanent, transient, temporary, and clustered tables. External tables are not currently supported within Snowflake.

Table Partitions n/a Snowflake’s unique architecture eliminates the need to manage physical table partitions.

Constraints Constraints Snowflake provides support for constraints as defined in the ANSI SQL standard. Snowflake enforces only the NOT NULL constraints. SQL
Server enforces NOT NULL constraints as well as referential integrity constraints.

Indexes/
Partitioned Indexes

n/a Snowflake’s unique architecture eliminates the need to manage indexes.

DDL AND PROCEDURAL LANGUAGES

Snowflake SQL reserves all ANSI keywords (with the exception of type keywords such as CHAR, DATE, and DECIMAL), as well as some additional keywords that are reserved
by SQL Server and other popular databases. DDL operations such as CREATE, DROP, and ALTER within Snowflake will, in many cases, be the same or very similar to their ANSI
counterparts within SQL Server.

C
H

A
M

P
IO

N
 G

U
ID

E
S

19

APPENDIX A: MICROSOFT SQL SERVER
TO SNOWFLAKE FEATURE MAPPING

SQL SERVER SNOWFLAKE COMMENTS

Views Views A Snowflake view can be created for any valid SELECT statement.

Transactions Transactions A Snowflake transaction is a set of SQL statements, both reads and writes, that are processed as a unit and guarantee ACID properties.

CLR/TSQL JavaScript Stored procedures and user defined functions (UDF) within Snowflake utilize JavaScript as their procedural language.

Stored Procedures Stored Procedures Snowflake stored procedures utilize JavaScript as the procedural language.

User-Defined
Functions

User-Defined Functions A UDF can contain either a SQL expression or JavaScript code, and can return either scalar or tabular results (such as table functions).

Unsupported Sequences Sequences can be used for generating sequential, unique numbers.

Indexed Views Materialized Views A materialized view is a precomputed data set derived from a query specification (the SELECT list in the view definition) and stored for later
reuse. In SQL Server, Indexed Views uses the syntax SCHEMABINDING.

DDL AND PROCEDURAL LANGUAGES (cont’d)

SQL SERVER SNOWFLAKE COMMENTS

ANSI SQL ANSI SQL ANSI-compliant SQL will transfer to Snowflake with little to no modification if schema, table, and column names remain the same.

SQL Functions SQL Functions Snowflake supports a wide range of scalar, aggregate, and window functions (such as Lead/Lag).

SQL Format Models SQL Format Models Snowflake supports a wide range of standard SQL format models for converting numeric and date values to text and vice versa.

Hints n/a Snowflake’s unique architecture is optimized for data warehousing and eliminates the need for fine-grained query plan tuning via hints.

DML

Snowflake supports standard SQL, including a subset of ANSI SQL:1999 and the SQL:2003 analytic extensions. Snowflake also supports common variations for several
commands where those variations do not conflict with each other. Snowflake SQL reserves all ANSI keywords (with the exception of data type keywords such as CHAR, DATE,
and DECIMAL). Snowflake supports some additional keywords (such as ASC, DESC, or MINUS) that are reserved by SQL Server and other popular databases. Additionally,
Snowflake reserves keywords REGEXP and RLIKE (which function like the ANSI reserved keyword LIKE) and SOME (which is a synonym for the ANSI reserved keyword ANY).

C
H

A
M

P
IO

N
 G

U
ID

E
S

20

APPENDIX A: MICROSOFT SQL SERVER
TO SNOWFLAKE FEATURE MAPPING

SQL SERVER SNOWFLAKE COMMENTS

GETDATE() TIMESTAMP_NTZ Snowflake’s TIMESTAMP_NTZ is similar to TSQL Datetime. Use ALTER SESSION SET TIMESTAMP_TYPE_MAPPING=TIMESTAMP_LTZ;

TO_DATE TO_DATE Behavior within Snowflake will be similar to SQL Server.

DATEDIFF DATEDIFF Behavior within Snowflake will be similar to SQL Server.

DATEADD DATEADD Behavior within Snowflake will be similar to SQL Server.

DATE CONSIDERATIONS

Unlike SQL Server, in Snowflake, there is no GETDATE() function, so you cannot insert the value of CURRENT_TIMESTAMP() into a column with DATETIME datatype. This is
because, in Snowflake, DATETIME is an alias for TIMESTAMP_NTZ but CURRENT_TIMESTAMP returns TIMESTAMP_LTZ, which is incompatible, as detailed below:

C
H

A
M

P
IO

N
 G

U
ID

E
S

21

CASE SENSITIVITY

Since Snowflake is case sensitive (for example, Glass,
GLASS, and glass are three different values), during
the migration, check for comparison issues in queries.
Microsoft SQL Server is case insensitive by default,
however, it is possible to create a case-sensitive SQL
Server database and even to make specific table
columns case sensitive. Determine if a database
or database object is case sensitive by checking
its COLLATION property and look for CI or CS in
the result. Run SELECT name, description FROM
sys.fn_helpcollations(), to illustrate all collations
supported by the SQL Server installation. Another
simple solution to this issue is to use UPPER on
both sides of a comparison, for example, WHERE
UPPER(COLUMNNAME)=UPPER(COLUMNNAME),
if you want to ignore any differences in case.

CONSTRAINTS

Microsoft SQL Server enforces Primary Key and
Foreign Key constraints. While Snowflake supports
the syntax to define Primary Keys and Foreign Keys,
they aren’t enforced within Snowflake. This means
you’ll need to reengineer load processes that depend
on constraints to prevent duplicate entries and
orphaned records from being entered into the data
warehouse.

DATE VERSUS TO_DATE()

Microsoft SQL Server has the capability to put DATE
in front of a string in order to treat it as a date value

(for example, DATE ‘2018-12-31’). In Snowflake, the
syntax is TO_DATE(), for example, TO_DATE(‘2018-
12-31’). It isn’t necessary to use DATE or TO_DATE()
in many situations, since both Microsoft SQL Server
and Snowflake can interpret the date values stored
in a string. When migrating SQL from Microsoft SQL
Server to Snowflake, it may be more desirable to
replace DATE with TO_DATE() rather than dropping
DATE altogether.

UPDATING DATA THROUGH A VIEW

Microsoft SQL Server allows inserts, updates, and
deletes to be executed against a view, which then
updates the underlying table. In Snowflake, inserts,
updates, and deletes must be executed against a
table and can’t be executed against a view. Again,
load processes may need to be reengineered to
account for this.

SYNTAX SPECIFIC TO SQL SERVER

SQL Server has SQL syntax that is not used in
Snowflake:
• PARTITION BY
• COMPRESS/DECOMPRESS
• FORMAT
• INDEXES
• CURSOR
• HINTS
• FREETEXT
• BULK INSERT
• DISABLE/ENABLE TRIGGER

• COLLATE
• UPDATE STATISTICS (not needed in Snowflake as

this is carried out as a service)
• ROLLBACK TRANSACTION (within Snowflake, it is

ROLLBACK)

OTHER CONSIDERATIONS:

In Snowflake, variables can be initialized in SQL using
the SET command. The data type of the variable
is derived from the date type of the result of the
evaluated expression. In Azure SQL Data Warehouse,
DECLARE <variable> <date type> is used followed by
setting the value to the variable.

SQL Server was built primarily for OLTP. Snowflake
was built for OLAP.

Note that you do not need to define a schema in
advance when loading JSON data into Snowflake.

For SQL Server Stored Procedures, use table
functions if you are returning result sets from SQL
stored procedures and Python if just executing
business logic when using Snowflake.

Integration tables are not required as Snowflake is an
ELT platform. Staging tables are not required.

APPENDIX B:
OTHER KNOWN MIGRATION ISSUES C

H
A

M
P

IO
N

 G
U

ID
E

S

22

Use row counts and sums of numeric data to validate
data matches between Microsoft SQL Server
and Snowflake. Another way to confirm you’ve
successfully loaded all data into Snowflake is to get
unique values from columns in Microsoft SQL Server
and compare those unique values with Snowflake.

For use cases where you require more in-depth
validation, add an MD5 hash to the data extracted
from Microsoft SQL Server. Construct this MD5
hash using columns that won’t change when the data
is loaded into Snowflake (for example, include key

columns and attributes in the hash, but exclude insert
and update dates/timestamps that can change based
on when the data is loaded into Snowflake). As you
load data into Snowflake, generate another MD5
hash across the same set of columns, so you can
compare it with the MD5 hash from Microsoft SQL
Server. This allows you to compare the contents of
the row on the MD5 hash from Microsoft SQL Server
with the MD5 hash from Snowflake, rather than
comparing each column individually.

APPENDIX C: COMPARING DATA FROM
MICROSOFT SQL SERVER TO SNOWFLAKE

SQL SERVER DOCUMENTATION

• Data types (Transact-SQL) - SQL Server

• Maximum capacity specifications for SQL
Server - SQL Server

SNOWFLAKE DOCUMENTATION

• General Reference

APPENDIX D: REFERENCES

C
H

A
M

P
IO

N
 G

U
ID

E
S

https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/sql-server/maximum-capacity-specifications-for-sql-server?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/sql-server/maximum-capacity-specifications-for-sql-server?view=sql-server-2017
https://docs.snowflake.net/manuals/sql-reference.html

ABOUT SNOWFLAKE

© 2020 Snowflake, Inc. All rights reserved. snowflake.com #YourDataNoLimits

Snowflake’s cloud data platform shatters the barriers that have prevented organizations of all sizes from unleashing the
true value from their data. Thousands of customers deploy Snowflake to advance their organizations beyond what was
possible by deriving all the insights from all their data by all their business users. Snowflake equips organizations with a
single, integrated platform that offers the only data warehouse built for the cloud; instant, secure, and governed access

to their entire network of data; and a core architecture to enable many types of data workloads, including a single
platform for developing modern data applications. Snowflake: Data without limits. Find out more at snowflake.com.

Snowflake is FedRAMP Authorized

https://twitter.com/SnowflakeDB
https://www.linkedin.com/company/snowflake-computing/
https://www.youtube.com/user/snowflakecomputing
https://www.facebook.com/Snowflake-Computing-709171695819345/
https://twitter.com/SnowflakeDB
http://snowflake.com

