PARTNER CERTIFIED SOLUTION
Supercharge Your Data Analytics with ThoughtSpot and Snowflake
name: app_environment
channels:
- snowflake
dependencies:
- matplotlib=*
- modin=0.28.1
- seaborn=*
- snowflake=*
git clone [email protected]:Snowflake-Labs/sfguide-data-engineering-pipelines-with-pandas-on-snowflake.git
{
"cells": [
{
"cell_type": "markdown",
"id": "1dde02fa-0044-4b20-b7bb-10f1a5b3fabb",
"metadata": {
"collapsed": false,
"name": "cell1"
},
"source": [
"### Data Engineering Pipelines with pandas on Snowflake\n",
"\n",
"This demo is using the [Snowflake Sample TPC-H dataset](https://docs.snowflake.com/en/user-guide/sample-data-tpch) that should be in a shared database named `SNOWFLAKE_SAMPLE_DATA`. You can run this notebook in a Snowflake Notebook. \n",
"\n",
"During this demo you will learn how to use [pandas on Snowflake](https://docs.snowflake.com/developer-guide/snowpark/python/snowpark-pandas) to:\n",
"* Create datframe from a Snowflake table\n",
"* Aggregate and transform data to create new features\n",
"* Save the result into a Snowflake table\n",
"* Create a serverless task to schedule the feature engineering\n",
"\n",
"pandas on Snowflake is delivered through the Snowpark pandas API as part of the Snowpark Python library (preinstalled with Snowflake Notebooks), which enables scalable data processing of Python code within the Snowflake platform. \n",
"\n",
"Start by adding neccessary libraries using the `Packages` dropdown, the additional libraries needed for this notebook is: \n",
"* `modin` (select version 0.28.1)\n",
"* `snowflake`\n",
"* `matplotlib`\n",
"* `seaborn`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4039104e-54fc-411e-972e-0f5a2d884595",
"metadata": {
"codeCollapsed": false,
"collapsed": false,
"language": "python",
"name": "cell2"
},
"outputs": [],
"source": [
"import streamlit as st\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d66adbc4-2b92-4d7d-86a5-217ee78e061f",
"metadata": {
"codeCollapsed": false,
"collapsed": false,
"language": "python",
"name": "cell3"
},
"outputs": [],
"source": [
"# Snowpark Pandas API\n",
"import modin.pandas as spd\n",
"# Import the Snowpark pandas plugin for modin\n",
"import snowflake.snowpark.modin.plugin\n",
"\n",
"from snowflake.snowpark.context import get_active_session\n",
"# Create a snowpark session\n",
"session = get_active_session()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "811abc04-f6b8-4ec4-8ad4-34af28ff8c31",
"metadata": {
"codeCollapsed": false,
"collapsed": false,
"language": "python",
"name": "cell4"
},
"outputs": [],
"source": [
"# Name of the sample database and the schema to be used\n",
"SOURCE_DATA_PATH = \"SNOWFLAKE_SAMPLE_DATA.TPCH_SF1\"\n",
"SAVE_DATA_PATH = \"SNOW_PANDAS_DE_QS.DATA\"\n",
"# Make sure we use the created database and schema for temp tables etc\n",
"session.use_schema(SAVE_DATA_PATH)"
]
},
{
"cell_type": "markdown",
"id": "0721a789-63a3-4c90-b763-50b8a1e69c92",
"metadata": {
"collapsed": false,
"name": "cell5"
},
"source": [
"We will start by creating a number of features based on the customer orders using the line items.\n",
"\n",
"Start with the `LINEITEM` table to create these features so we will start by creating a Snowpark Pandas Datframe aginst it, select the columns we are interested in and then show info about the dataframe, the shape and the first rows."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2a091f1b-505f-4b61-9088-e7fd08e16f83",
"metadata": {
"codeCollapsed": false,
"collapsed": false,
"language": "python",
"name": "cell6"
},
"outputs": [],
"source": [
"lineitem_keep_cols = ['L_ORDERKEY', 'L_LINENUMBER', 'L_PARTKEY', 'L_RETURNFLAG', 'L_QUANTITY', 'L_DISCOUNT', 'L_EXTENDEDPRICE']\n",
"lineitem_df = spd.read_snowflake(f\"{SOURCE_DATA_PATH}.LINEITEM\")[lineitem_keep_cols]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f360d4de-21f4-4723-9778-ceb8683c81c8",
"metadata": {
"codeCollapsed": false,
"collapsed": false,
"language": "python",
"name": "cell7"
},
"outputs": [],
"source": [
"st.dataframe(lineitem_df.head())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "be5d37e2-e990-4e71-b762-41a64845955f",
"metadata": {
"codeCollapsed": false,
"collapsed": false,
"language": "python",
"name": "cell8"
},
"outputs": [],
"source": [
"# Get info about the dataframe\n",
"lineitem_df.info()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "618f45b8-a2a8-4d08-967e-945d2329335e",
"metadata": {
"codeCollapsed": false,
"collapsed": false,
"language": "python",
"name": "cell9"
},
"outputs": [],
"source": [
"print(f\"DataFrame shape: {lineitem_df.shape}\")"
]
},
{
"cell_type": "markdown",
"id": "e53fea0b-2f36-4662-a382-98938a74f2c2",
"metadata": {
"collapsed": false,
"name": "cell10"
},
"source": [
"## Data Cleaning - Filtering and Aggregation\n",
"\n",
"Taking a look at different values for `L_RETURNFLAG` and include only line items that was delivered (`N`) or returned (`R`)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2f326c13-ed4c-4e6f-b40e-7e8338c270c4",
"metadata": {
"codeCollapsed": false,
"collapsed": false,
"language": "python",
"name": "cell11"
},
"outputs": [],
"source": [
"print(lineitem_df.L_RETURNFLAG.value_counts())"
]
},
{
"cell_type": "markdown",
"id": "122cb06a-3a08-4d32-8864-4c8ff8c046b4",
"metadata": {
"collapsed": false,
"name": "cell12"
},
"source": [
"Add a filter to the dataframe"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7f9c56b7-b2db-4591-97ce-451876e9b9a6",
"metadata": {
"codeCollapsed": false,
"collapsed": false,
"language": "python",
"name": "cell13"
},
"outputs": [],
"source": [
"print(f\"Before Filtering: {len(lineitem_df)} rows\")\n",
"spd_lineitem = lineitem_df[lineitem_df['L_RETURNFLAG'] != 'A']\n",
"print(f\"After Filtering: {len(spd_lineitem)} rows\")\n",
"st.dataframe(spd_lineitem.head())"
]
},
{
"cell_type": "markdown",
"id": "1f802173-162f-4dff-8567-ade65b9f57f1",
"metadata": {
"collapsed": false,
"name": "cell14"
},
"source": [
"To track the actual discount a customer gets per order, we need to calculate that in a new column by taking the product of the amount of discount (`L_DISCOUNT`), numbers sold (`L_QUANTITY`), and the price of item (`L_EXTENDEDPRICE`)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "58f45f3d-3633-424e-b777-467a2ba0b22d",
"metadata": {
"codeCollapsed": false,
"collapsed": false,
"language": "python",
"name": "cell15"
},
"outputs": [],
"source": [
"spd_lineitem['DISCOUNT_AMOUNT'] = spd_lineitem['L_DISCOUNT'] * spd_lineitem['L_QUANTITY'] * spd_lineitem['L_EXTENDEDPRICE']\n",
"st.dataframe(spd_lineitem.head())"
]
},
{
"cell_type": "markdown",
"id": "6ec9d862-e957-42b9-9d86-03f2ad3501f7",
"metadata": {
"collapsed": false,
"name": "cell16"
},
"source": [
"Now we want to compute the aggregate of items and discount amount, grouped by order key and return flag.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "578cbdf7-a655-416b-87da-417f7edd35bb",
"metadata": {
"codeCollapsed": false,
"collapsed": false,
"language": "python",
"name": "cell17"
},
"outputs": [],
"source": [
"# Aggregations we want to do\n",
"column_agg = {\n",
" 'L_QUANTITY':['sum'], # Total Items Ordered \n",
" 'DISCOUNT_AMOUNT': ['sum'] # Total Discount Amount\n",
" }\n",
"\n",
"# Apply the aggregation\n",
"spd_lineitem_agg = spd_lineitem.groupby(by=['L_ORDERKEY', 'L_RETURNFLAG'], as_index=False).agg(column_agg)\n",
"\n",
"# Rename the columns\n",
"spd_lineitem_agg.columns = ['L_ORDERKEY', 'L_RETURNFLAG', 'NBR_OF_ITEMS', 'TOT_DISCOUNT_AMOUNT']\n",
"st.dataframe(spd_lineitem_agg.head())"
]
},
{
"cell_type": "markdown",
"id": "00dd1299-9bb2-4aba-9f37-b04ca3639892",
"metadata": {
"collapsed": false,
"name": "cell18"
},
"source": [
"## Data Transformation - Pivot and reshape\n",
"\n",
"We want to separate the `NBR_OF_ITEMS` and `TOT_DISCOUNT_AMOUNT` by `L_RETURNFLAG` so we have one column for each uinique `L_RETURNFLAG` value. \n",
"Using the **pivot_table** method will give us one column for each unique value in `RETURN_FLAG`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7f586e8a-017b-4672-80a1-bcc9430a87c3",
"metadata": {
"codeCollapsed": false,
"collapsed": false,
"language": "python",
"name": "cell19"
},
"outputs": [],
"source": [
"# This will make L_ORDERKEY the index\n",
"spd_lineitem_agg_pivot_df = spd_lineitem_agg.pivot_table(\n",
" values=['NBR_OF_ITEMS', 'TOT_DISCOUNT_AMOUNT'], \n",
" index=['L_ORDERKEY'],\n",
" columns=['L_RETURNFLAG'], \n",
" aggfunc=\"sum\")"
]
},
{
"cell_type": "markdown",
"id": "38dd144f-b18b-4673-b8c0-7db6d237ae59",
"metadata": {
"collapsed": false,
"name": "cell20"
},
"source": [
"The **pivot_table** method returns subcolumns and by renaming the columns we will get rid of those, and have one unique columns for each value."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6166f8b0-fc8c-451e-9780-3e1f634ccbdd",
"metadata": {
"codeCollapsed": false,
"collapsed": false,
"language": "python",
"name": "cell21"
},
"outputs": [],
"source": [
"spd_lineitem_agg_pivot_df.columns = ['NBR_OF_ITEMS_N', 'NBR_OF_ITEMS_R','TOT_DISCOUNT_AMOUNT_N','TOT_DISCOUNT_AMOUNT_R']\n",
"# Move L_ORDERKEY back to column\n",
"spd_lineitem_agg_pivot = spd_lineitem_agg_pivot_df.reset_index(names=['L_ORDERKEY'])\n",
"st.dataframe(spd_lineitem_agg_pivot.head(10))"
]
},
{
"cell_type": "markdown",
"id": "1657bbc7-caf2-461c-9302-6f8d2187e0af",
"metadata": {
"collapsed": false,
"name": "cell22"
},
"source": [
"## Combine lineitem with orders information\n",
"\n",
"Load `ORDERS` table and join with dataframe with transformed lineitem information."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c910ac10-38b3-4aa4-a7d2-6321243a4a60",
"metadata": {
"codeCollapsed": false,
"collapsed": false,
"language": "python",
"name": "cell23"
},
"outputs": [],
"source": [
"spd_order = spd.read_snowflake(f\"{SOURCE_DATA_PATH}.ORDERS\")\n",
"# Drop unused columns \n",
"spd_order = spd_order.drop(['O_ORDERPRIORITY', 'O_CLERK', 'O_SHIPPRIORITY', 'O_COMMENT'], axis=1)\n",
"# Use streamlit to display the dataframe\n",
"st.dataframe(spd_order.head())"
]
},
{
"cell_type": "markdown",
"id": "97d52cd4-a71b-4c72-9137-accdf54b571b",
"metadata": {
"collapsed": false,
"name": "cell24"
},
"source": [
"Use **merge** to join the two dataframes"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6aee6f94-f33b-4492-9f89-2808c05f07d4",
"metadata": {
"codeCollapsed": false,
"collapsed": false,
"language": "python",
"name": "cell25"
},
"outputs": [],
"source": [
"# Join dataframes\n",
"spd_order_items = spd_lineitem_agg_pivot.merge(spd_order,\n",
" left_on='L_ORDERKEY', \n",
" right_on='O_ORDERKEY', \n",
" how='left')"
]
},
{
"cell_type": "markdown",
"id": "3adc0331-1879-452f-9cc6-dd69f6824974",
"metadata": {
"collapsed": false,
"name": "cell26"
},
"source": [
"Drop the `L_ORDERKEY`column, it has the same values as `O_ORDERKEY`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8504a44d-d687-4c8d-af78-4b802901a168",
"metadata": {
"codeCollapsed": false,
"collapsed": false,
"language": "python",
"name": "cell27"
},
"outputs": [],
"source": [
"spd_order_items.drop('L_ORDERKEY', axis=1, inplace=True)\n",
"st.write(f\"DataFrame shape: {spd_order_items.shape}\")\n",
"st.dataframe(spd_order_items.head())"
]
},
{
"cell_type": "markdown",
"id": "a8b050f9-77a9-460a-853b-888963e6a214",
"metadata": {
"collapsed": false,
"name": "cell28"
},
"source": [
"More aggregations grouped by customer (`O_CUSTKEY`)\n",
"* Total items delivered by customer\n",
"* Average items delivered by customer\n",
"* Total items returned by customer\n",
"* Average items returned by customer"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "36e32341-cc93-4b5d-a5f1-15a15d8ddf69",
"metadata": {
"codeCollapsed": false,
"collapsed": false,
"language": "python",
"name": "cell29"
},
"outputs": [],
"source": [
"# Aggregations we want to do\n",
"column_agg = {\n",
" 'O_ORDERKEY':['count'], \n",
" 'O_TOTALPRICE': ['sum' ,'mean', 'median'],\n",
" 'NBR_OF_ITEMS_N': ['sum' ,'mean', 'median'],\n",
" 'NBR_OF_ITEMS_R': ['sum' ,'mean', 'median'],\n",
" 'TOT_DISCOUNT_AMOUNT_N': ['sum'],\n",
" 'TOT_DISCOUNT_AMOUNT_R': ['sum']\n",
" }\n",
"\n",
"# Apply the aggregation\n",
"spd_order_profile = spd_order_items.groupby(by='O_CUSTKEY', as_index=False).agg(column_agg)\n",
"\n",
"# Rename the columns\n",
"spd_order_profile.columns = ['O_CUSTKEY', 'NUMBER_OF_ORDERS', 'TOT_ORDER_AMOUNT', 'AVG_ORDER_AMOUNT', 'MEDIAN_ORDER_AMOUNT', \n",
" 'TOT_ITEMS_DELIVERED', 'AVG_ITEMS_DELIVERED', 'MEDIAN_ITEMS_DELIVERED', \n",
" 'TOT_ITEMS_RETURNED', 'AVG_ITEMS_RETURNED', 'MEDIAN_ITEMS_RETURNED',\n",
" 'TOT_DISCOUNT_AMOUNT_N', 'TOT_DISCOUNT_AMOUNT_R']\n",
"st.dataframe(spd_order_profile.head())"
]
},
{
"cell_type": "markdown",
"id": "daf0e441-43d1-4729-bc20-aea8f123befa",
"metadata": {
"collapsed": false,
"name": "cell30"
},
"source": [
"Calculate the total and average discount"
]
}
Overview
This solution architecture shows you to make a custom embedded analytics application using Thoughtspot. It also shows how the developer ecosystem empowers product teams to achieve more with less by providing modern developer tools, resources, and pre-built capabilities that scale with business demand.
By integrating your Snowflake data with ThoughtSpot, you can
- Unlock the true power of your data for all users
- Empowering your team to make data-driven decisions
- Solve real-world business problems
- Tap into new levels of productivity.
Solution Architecture: AI-powered analytics with Thoughtspot

About the Architecture
- Use Sage Search using Natural Language or Key Words to uncover insights powered by LLMs
- Use AskSage for a conversational experience to interact with your data
- Live query provides timely answers
- No data-caching or movement required
- Centralize data management and governance in Snowflake
This solution was created, tested, and verified by a member of the Snowflake Partner Network and meets compatibility requirements with Snowflake instances as of date of publication.
Solution not working as expected? Contact our team for assistance.